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Abstract

The residuals of a least squares regression model are defined as the observations minus the 

modeled values. For least squares regression to produce valid CIs and P values, the residuals must 

be independent, be normally distributed, and have a constant variance. If these assumptions are not 

satisfied, estimates can be biased and power can be reduced. However, there are ways to assess 

these assumptions and steps one can take if the assumptions are violated. Here, we discuss both 

assessment and appropriate responses to violation of assumptions.
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Introduction

One wants to conduct a linear regression, a model in which a dependent variable (assumed, 

to limit scope, continuous and uncensored) is predicted from one or more independent 

variables. Alternately, one might consider a 1- or 2-sample t test, an ANOVA, or an 

ANCOVA, because all are special cases of regression; for simplicity, we will continue to 

say “regression,” unless one of the special cases is specifically intended.

One gathers observations of both the dependent variable and the independent variable(s). 

One uses software that implements regression. Suppose the slope is significantly different 

from zero. Does that mean that one is done? Actually, additional steps are needed to make 

sure the conclusion is valid. We will discuss some (but not all) of them.

Linear regression (the example below assumes one independent variable, but there can be 

any number) involves a model of the following form:
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where, for the ith observation, Yi is the dependent variable, Xi is the independent variable, 

β0 and β1 are fixed but unknown constants, and εi is a random variable accounting for 

measurement error/lack of fit of model. However, for least squares, the most common form 

of regression, to work, certain assumptions concerning {εi} must be satisfied:

1. {εi} must be uncorrelated.

2. {εi} must be normally distributed.

3. Var{εi} must be constant.

For a more complete explanation, see Berry (1).

To be clear, these are assumptions about {εi} and do not apply to the dependent or 

independent variables. In particular, neither the dependent nor independent variables need to 

be normally distributed.

Violation of these assumptions can cause coverage of CIs (the probability that the CI 

contains the true parameter value) to be very different from the nominal value (the value that 

was calculated under the assumptions listed above). Similarly, the actual and nominal values 

of the probabilities of type I error and type II error can be far apart. The more severe the 

violation, the more severe the impact. In practical terms, although a minor violation might or 

might not have much practical consequence, a severe violation often leads to poor statistical 

performance.

Of course, {εi} cannot be directly observed. We must, therefore, work with the estimated 

residuals, {ε̂is}, defined as the observed ith value of the dependent variable minus the 

modeled ith value. How can we decide, based on the estimated residuals, if the assumptions 

about the unobserved {εi} are satisfied? There are both formal tests and less formal 

graphical methods, both of which have advantages. Tests are objective and can, if necessary, 

be automated. However, with large sample sizes, tests can flag trivial deviations from the 

assumptions. Tests only reject the null hypothesis if the evidence is strong; with small 

sample sizes, tests might fail to detect violations that, although not statistically significant, 

might still be problematic if real. Graphical methods are subjective. However, graphical 

methods often allow one to judge the severity of the departures from the assumptions. The 

degree of severity determines how badly remedial measures are needed—and, indeed, if 

they are likely to make much difference. Admittedly, this might be difficult for those 

without extensive statistical experience, so the reader should assess his or her own ability to 

interpret graphics before implementing them. Here, we discuss both tests and graphical 

methods for assessing assumptions and what to do if the assumptions are violated.

Assessing Assumptions

Residuals are uncorrelated

Knowledge of how the data were gathered often makes independence (which implies no 

correlation) plausible. However, correlation of population residuals can be assessed. Note 

that one must distinguish {εi}, the population residual, from the estimated residuals, {ε̂i}; 
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some correlation is always present in the {ε̂i}, because it is a property of linear regression 

that Σ{ε̂i} must always be 0.

There are infinitely many forms of correlation. For example, observations from similar 

individuals might be correlated. Clustering (e.g., if the data were collected in a few 

locations, observations collected at a single location) can induce correlation. We limit our 

discussion to what is perhaps the most common form of correlation, serial correlation—if 

observations are gathered sequentially, residuals that occur near one another might be 

correlated (autocorrelation).

Test—The most common test for assessing serial dependence is based on the Durbin-

Watson statistic (2, 3). Values of the Durbin-Watson statistic that are larger than the upper 

tail critical value suggest positive correlation, whereas values that are smaller than the lower 

tail critical value suggest negative correlation. The null hypothesis is lack of correlation and 

so is rejected only if evidence of correlation is strong.

Graphics—The Durbin-Watson statistic can be interpreted by noting that it approximately 

equals 2(1 − r), where r is the sample correlation between estimated residuals and lag-one 

estimated residuals (hereafter, simple “residuals”) (4). This can be graphically exploited by 

plotting a scatterplot of residuals vs. lag-one residuals. If the assumption is satisfied, one 

should see a patternless blob (in particular, it does not resemble a straight line); a pattern 

(particularly scatter around a line) suggests there might be an issue. In Figure 1, we illustrate 

what a scatterplot in which residuals are truly independent and what a scatterplot in which 

the residuals are positively correlated might look like. (All figures were generated by using 

simulated data—details of the simulation are not given here, for the sake of brevity. Because 

the residuals are the result of a simulation, we know, unlike the situation that would arise 

with real data, for certain that they are independent/positively correlated.)

Normality

The Gauss-Markov theorem shows us that regression provides the linear unbiased estimate 

with the smallest possible variance, even if residuals are not normally distributed. This is 

sometimes misinterpreted to mean that normality is not important. The Gauss-Markov 

theorem only concerns point estimates, not tests or CIs. Regression estimates can be 

especially sensitive to heavytailed distributions (5).

Test—Many tests for normality of residuals have been proposed. The D'Agostino test (6) is 

based on sample skewness (a measure of symmetry) and kurtosis (a measure of how heavy 

the distribution's tails are). In some cases, the heaviness of the tails is the most important 

feature.

The Shapiro-Wilk test (7) is a formalization of the quantile-quantile plot (8), a comparison 

of theoretical and empirical quantiles. Lilliefor's test (9) is a normality test related to the 

one-sample Kolmogorov-Smirnov test (Lilliefor's test is for a family of distributions, 

whereas the Kolmogorov-Smirnov test is for a single specified distribution). In fact, 

Lilliefor's test is sometimes incorrectly identified as the Kolmogorov-Smirnov test.
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In all of these tests, the null hypothesis is normality. The null is rejected only if evidence of 

nonnormality is strong. Therefore, one should be cautious in implementing these tests with 

small sample sizes. In such cases, departures from normality that can have substantial 

consequences are sometimes not detected.

Graphics—The simplest way to graphically evaluate normality of residuals is to plot a 

histogram and examine it for departures from normality. This can often reveal skewed 

residuals. It can be problematic for heavy-tailed residuals, because some heavy-tailed 

symmetric distributions can look quite normal. A more sophisticated method, and one that 

often reveals deviations from normality that are difficult to see in a histogram, is to plot the 

empirical quantiles of the residuals against the theoretical quantiles of a normal distribution 

(a quantile-quantile plot). A straight line suggests normality, whereas a curved suggests a 

departure from normality. In Figure 2, we illustrate what normal and nonnormal quantile-

quantile plots of residuals might look like. The residuals are the result of a simulation and 

therefore very clear-cut. In particular, the residuals in Figure 2A were truly normally 

distributed, instead of being “approximately normal,” as one usually encounters in practice. 

Actual data are likely to be more ambiguous, requiring judgment. For example, a small 

departure from linearity might have very small practical consequences.

Constant variance

Variance of residuals can, in a departure from the assumptions that underlie linear 

regression, change as independent variables do. It is particularly common that the variance 

of the residuals increases with values of an independent variable. Even with nonconstant 

variance, linear regression provides unbiased point estimators (Gauss-Markov theorem). 

However, with nonconstant residual variance, the nominal and actual probabilities of type I 

and type II errors can be very different. Similarly, coverage of CIs can be far from their 

nominal values.

This is of particular concern with ANOVA. If a subpopulation has both a larger variance and 

a larger sample size, the resulting test becomes conservative (and of low power). 

Conversely, if a subpopulation has both a smaller sample size and a larger variance, the 

resulting test can be anticonservative (10).

Test—The Breusch-Pagan test (11) is a χ2 test based on regressing the squared residuals on 

the independent variables. The Breusch-Pagan test can be sensitive to violations of 

normality. The White test (12) might be less sensitive to nonnormality. Like the Breusch-

Pagan test, it depends on an auxiliary regression. Levene's test (13) estimates the variance 

under the assumption that the null hypothesis is true and again under more general 

assumptions and then calculates the ratio of those estimates. Values statistically significantly 

larger than 1.00 indicate nonconstant variance. However, whichever test is used, it is 

probably best to look for evidence of nonnormality before testing for constant variance. The 

null hypothesis is constant variance and so is rejected only if evidence of nonconstant 

variance is strong. In cases with small sample size, nonconstant variances that can have 

substantial consequences are sometimes not detected.
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Graphics—The simplest form of graphical evaluation is to plot residuals vs. each of the 

independent variables (or, alternately, vs. the modeled values of the dependent variable). If 

the assumption is satisfied, one should see a patternless blob. A pattern suggests there might 

be an issue. The “v-shaped” pattern (or, if one prefers, “fan shaped” or “pie-wedge shaped”), 

where absolute values of residuals tend to increase as an independent variable increases, is 

reasonably common in real data. Therefore, one should be very wary of it. In Figure 3, we 

illustrate what a patterned and v-shaped scatterplot might look like.

What to Do When Assumptions Are Violated

The discussions of this section are, of necessity, somewhat sketchy. However, we provide 

references where the details of each method can be found by someone who needs to 

implement the method.

Residuals are correlated

How one handles correlated residuals depends on how much one knows about the 

correlation structure of the residuals. For example, if one knows that residuals are likely to 

be auto-correlated, this can be accounted for in modeling. Feasible generalized least squares 

is a method that has broad applicability. An explanation appears in Baltagi (14).

Residuals are not normally distributed

If a parametric family can be identified, then one can often achieve greatest power by 

explicit modeling. This can be done through generalized linear models (15). If no parametric 

family is found, a transformation of either the independent or dependent variables might 

help. The Box-Cox transform (16) provides a model-based transformation of the dependent 

variable. Tukey's ladder of transformations (17) provides a graphics-based method of 

choosing transformation of both the dependent and independent variables.

Robust regression is a variant of regression for which outliers in the residuals (but not 

necessarily in the independent variables) have little impact on the estimates. There are too 

many forms of robust regression to discuss here, although most involve down-weighting, in 

some manner, “extreme” residuals. For example, least trimmed squares (18) minimizes the 

sum of the squared “middle” residuals, deleting the extremes. An overview of robust 

regression appears in Rousseeuw and Leroy (19).

In the case of residuals of totally unknown parametric form, one can use resampling 

methods, in which one samples from the sample, to obtain estimates of standard errors that 

do not depend on parametric assumptions (although other assumptions, not specified here, 

must be made). For example, one can bootstrap residuals (a classic resampling method) or 

use jackknifing (another resampling method) on the entire set of observations. At one time, 

objections to resampling due to computational intensiveness were common. In today's world 

of cheap and easy computing, these objections are no longer valid. Indeed, many common 

statistical software packages (e.g., SAS, Stata) implement bootstrapping and/or the jackknife 

with a single command. An overview of resampling, as applied to regression, appears in Wu 

(20).
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Finally, some authors [e.g., Valdar et al. (21)] advocate using the inverse normal 

transformation to make the dependent variable normally distributed. However, the 

assumption of normality concerns the residuals, not the dependent variable. Although the 

inverse normal transformation sometimes makes residuals normally distributed, it can also 

fail to do so (22). Thus, if one uses this method, one should still check residuals for 

normality.

Variance is not constant

Nonconstant variance can be extremely problematic, because data points with greater 

variance can have a disproportionate impact on the estimates. Fortunately, methods already 

mentioned can often help. For example, the Box-Cox transformation or Tukey's ladder of 

transformations can sometimes make variances approximately constant. Robust regression 

methods can be less sensitive to nonconstant variance than traditional methods. Weighted 

least squares [for an explanation, see Strutz (23)], feasible generalized least squares 

regression, and generalized linear models are all ways that one might deal with nonconstant 

variance. Huber-White standard errors (12, 24), readily available in many software 

packages, provide estimates that converge, as the sample size increases, to the true 

population value. This is yet another valid approach.

In conclusion, if the residuals of a least squares regression model do not satisfy the 

assumptions, P values and CIs might not perform as one expects. However, there are ways 

to assess these assumptions and steps one can take if the assumptions are violated. Many of 

these are easily implemented by using common statistical packages. With some effort, one 

can produce more defensible regressions.

Historically, some authors check assumptions and some do not. For example, Hirose et al. 

(25) did an ANOVA and t tests (both special cases of regression). They clearly reported 

checking assumptions. Similarly, so did Hussein et al. (26). Thus, we need not worry about 

the issue of validity of assumptions when assessing their research. On the other hand, Vors 

et al. (27) conducted an analysis that included both analysis of variance and t tests. The 

authors did not indicate that assumptions were tested. That does not necessarily mean that 

the assumptions were violated. It does not even mean that they were not tested. However, it 

does mean that the readers do not know. Thus, one does not know whether to worry about 

violation of assumptions in this work.

Finally, this report has not covered all important issues. We have not addressed outliers in 

either the independent variables (high-leverage data points) or the dependent variables (all 

but a small number of residuals are approximately normally distributed, but those few 

suggest very heavy tails). We have not addressed collinearity (some linear combination of 

independent variables is approximately constant). We have not discussed linearity of 

relation between dependent and independent variable (s). These issues are important but 

beyond the scope of this report.
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Figure 1. 
Uncorrelated residuals, Pearson correlation = −0.06 (A). Correlated residuals, Pearson 

correlation = 0.45 (B).
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Figure 2. 
Residuals normally distributed, quantile-quantile plot (A). Residuals not normally 

distributed, quantile-quantile plot (B).
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Figure 3. 
Constant variance of residuals, Pearson correlation = 0.00 (A). Increasing variance of 

residuals, Pearson correlation = 0.00 (B).
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